
Types make code safer and easier to 
maintain.

Retrofitting a type system to a dynamically 
typed language exposes interesting 
design challenges. How can language 
designers decide the types these 
languages deserve?

We look through for repeat patterns that stand out. Here are 
some interesting ones:

Future Work

● Collect more data, test hypotheses.
○ Study user misconceptions, provide lints and design educational content 

for creators.
● Explore Non Strict Mode design challenge.

○ An approachable yet trustworthy type checker.

Instrument telemetry. Allow language 
designers react to user patterns. We 
can address misuse (provide better 
educational content), improve linting 
suggestions and documentation 
towards growing a gradual type system.

we collect:
● Snippets of code
● Active typing modes
● Type signatures
● Patterns of interest

We collate the data once a week for a 
manual analysis. We have examined 
542,850 records across 2124 
experiences that adopt the any type.

Progress

Research Question and Gradual Typing

Dibri Nsofor
[University of Utah]
[Engine > Systems > Programmability] 

Towards a Corpus Study of the Dynamic Type

Proposed Solution

Suggestions

What should this return? An Adhoc Union, a 
string, a custom object?

● New diagnostics for Luau: Warnings
○ Raise warnings instead of errors for conditions that will not affect 

runtime behaviour. E.g. Luau can raise warnings for cyclic type 
dependencies to prevent the casts to any. 

● Shared Self Type
● Bounded Generics

○ Allow users to constrain bounds for generic types. This could also be 
an interesting approach to implementing a shared self type solution.

● Shared typing libraries.
○ The Roblox types are not precise enough. We should open source this 

typing effort and leverage community involvement to enhance 
precision.

● Address User Misconceptions
○ Common misuse of the type system stems from a knowledge gap. We 

have assembled a typing guide for Roblox creators to address 
common anti-patterns. Preview: go/typing-guide

● Better IDE support to jump to Data Model documentation.
○ Magic Functions and Instance declarations should offer support to 

jump straight to necessary documentation.

Managers: Aaron Weiss, Andy Freisen, 
Mitesh Shah 

:: a
ny

{ [any]: any}

(...any) → () 

(...any) → (...any) 

()

any

(x: any)

:: a
ny

any

() → any

Maybe we can 
introduce a 

dynamic type
Any

Wrist track spline

Interactions with the 
Data Model

Suggestion: IDE support for 
jumps to Creator Docs and 
shared type libraries.

Circular dependencies 
resolved with Anys 

Suggestion: Maintain own type 
modules to avoid cycles.

Anys to model 
primitive top types

Suggestion: Include
support for outer shape 
checks.


