
Research Challenges
Manual search is painstaking:
Originally 320k signatures
50k distinct sigs with Any

Patterns Found, So Far

Chasing Anys
How can the Dynamic type (Any) inform the growth of a Type System?

Type stubs v. Code:
Some patterns span a block of code, but we
only look at stubs.

Pattern matching with regex is too slow.
Over 3 days to search for -> Any in a 512
character type signature.

[OpExecCtx, str, Optional[str],
Optional[List[Dict[str, str]]],…] ->
Any

S = TypeVar('S', bound='Shape')
class Shape:
 def move(self: S, dist: int) -> S:
 self.position += dist
 return self

class Circle(Shape):
 pass

Circle().move(4) #type: Circle

def parse_config() -> dict[str, any]:
 ...

Car = TypeVar('Car')## car is unbounded
Traffic = Union[Car, List['Traffic']]
class CarObj:
 pass
def count_cars(x: Traffic, car: Car) -> int:
 if isinstance(x, List):
 x.append(car)
 return len(x)

count_cars([CarObj(), CarObj()], 5) #type: int

def __getattr__(self, key: str) -> Any:
 raise AttributeError

Untyped dicts
for external data

Untyped self references
for subclass polymorphism

Unbounded type variables
not sure. Workaround for recursive types?

Any for exceptions
laziness… does it matter?

Bounded
typevars

Make type from
config file

Dibri Nsofor, Ben Greenman

Filter for the
dynamic type

Identify
patterns

Search for flagged
patterns

70k
REPOS

 We are here studying 221 repos

t = int | str | t -> t
textbook types cannot express python idioms

def div(n, d) -> ??? :
 if d == 0:
 return "div0"
 else:
 return n/d

Two options:
1. Wildcard (Any)
2. Precise types
Union[str, int]

